
Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

On the infinite swapping limit for parallel
tempering

Yufei Liu

Division of Applied Mathematics
Brown University

with Paul Dupuis, J.D. Doll, Nuria Plattner

RESIM 2012

June, 2012



Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

The problem

One is interested in computing the integral∫
Rd
f (x)π(dx), (1)

where π is some probability distribution that is infeasible to
sample directly from.
A standard method to deal with this kind of problem is via
MCMC in which one constructs an ergodic Markov chain with
π as its invariant distribution. If µT is the empirical measure,
then under suitable ergodicity conditions (communicating,
aperiodic) ∫

Rd
f (x)µT (dx) =

1
T

∫ T

0
f (X (t))dt

would converge to (1).
If the underlying distribution π is unimodal, the sampling is
straightforward and the associated numerical results are
reliable.
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Examples: 1. Statistical mechanics

Let V denote the total potential energy of a statistical
mechanical system. π is the Boltzmann distribution (canonical
ensemble)

π (x)
.

=
1

Z (τ)
e−V (x)/τ ,

where τ is the scaled temperature and Z (τ) is the partition
function.
One is interested in computing quantities such as the average
potential.
MCMC: Metropolis-Hastings type algorithm or stochastic
dynamics method (based on a physical analogy, e.g. Andersen
1980).
Note that the higher the temperature, the "flatter" the
distribution, the less likely for the Markov chain to get stuck at
local minima of V .
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Examples: 2. Bayesian statistics

Given a prior distribution p (θ), a likelihood model P (D|θ) and
data D. π is the posterior distribution

π (θ|D) ∝ P (D|θ) p (θ) .

MCMC: Metropolis-Hastings type algorithm.
Define

V (θ)
.

= − logP (D|θ) .

then π (θ|D) ∝ e−V (θ)p (θ). For τ ≥ 1 define

πτ (θ|D) ∝ e−V (θ)/τp (θ) = P (D|θ)1/τ p (θ) .

MC for πτ (τ > 1) results in easier movement among local
minima of V (θ).
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Examples: 3. A minimization
problem

Minimize a function f over a set Ω. Construct a Markov chain
using a Metropolis-Hastings type algorithm with πτ as the
invariant distribution:

πτ (x) =
1

Z (τ)
e−f (x)/τ .

Here τ is chosen such that τ > 0. Markov chain favors better
minimization solutions of f . As τ → 0, πτ sharply peaked
around global minimum; as τ →∞, πτ approximate uniform
distribution on Ω.
Minimization algorithm: sample Markov chain under small τ .
However, small τ results in less mobility, the chain more easily
get stuck in local minima of f .
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The challenge

Use Gibbs distribution to illustrate. π (x) ∝ e−V (x)/τ . When τ
is small, the main contribution of∫

Rd
f (x)π(dx)

comes from the global minimum and “important” local minima
of V .
When V has various deep local minima that are separated by
steep "barriers", the underlying probability distribution π has
multiple isolated parts that communicate poorly with each
other, in which case the scheme can be extremely slow to
converge (the rare event problem).
An example of such is the Lennard-Jones cluster of 38 atoms.
This potential has ≈ 1014 local minima. The lowest 150 and
their “connectivity”graph are as in the figure (taken from
Doyle, Miller & Wales, JCP, 1999).
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Global minimum only discovered 10+ years ago. Focus on
overcoming rare-event sampling issues.
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Standard measures of performance

How should one describe the rate of convergence

1
T

∫ T

0
f (X (t))dt →

∫
Rd
f (x)π(dx)?

None of the standard descriptions work directly with
convergence of the empirical measure.

2nd eigenvalue. Consider the transition kernel

p(dx ,T , x0) = P {X (T ) ∈ dx |X (0) = x0} .

Under mild conditions the exponential rate of convergence

p(dx ,T , x0)→ π(dx)

is determined by the sub-dominant eigenvalue of the operator
corresponding to X . Used to characterize “effi ciency”of the
corresponding Monte Carlo.
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Standard measures of performance
and their shortcomings

Problem: Only indirectly related to problem of interest.
Information on density, but not on empirical measure which
depends on sample path; neglects potentially significant effect
of time averaging in empirical measure (Rosenthal,
Gubernatis).

Asymptotic variance. Also a popular quantity for comparing
effi ciency of algorithms, but is a property of the algorithm once
one is already at equilibrium. Also does not properly reflect the
time averaging.

Large deviation rate. We will use the LD rate I , where a
larger rate implies faster convergence.
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A representative example

Compute the average potential energy and other functionals
with respect to a Gibbs measure of the form

πτ (x) =
1

Z (τ)
e−V (x)/τ

A corresponding continuous time model is

dX = −∇V (X )dt +
√
2τdW , X (0) = x0,

where τ is a fixed temperature (properly scaled).

• Simulations are done using a discrete time model.
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An accelerated algorithm: parallel
tempering

Besides τ 1 = τ , introduce higher temperature τ 2 > τ 1. Thus

dX a1 = −∇V (X a1 )dt +
√
2τ 1dW1

dX a2 = −∇V (X a2 )dt +
√
2τ 2dW2,

with W1 and W2 independent. Now introduce swaps
(Swendsen, Geyer), i.e., X a1 and X

a
2 exchange locations with

state dependent intensity

ag(x1, x2)
.

= a
(
1 ∧ πτ 1 (x2)πτ 2 (x1)

πτ 1 (x1)πτ 2 (x2)

)
,

with a > 0, as the “swap rate.”
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An accelerated algorithm: parallel
tempering

One can check (detailed balance condition): with this swapping
intensity, invariant distribution of the joint process

π (x1, x2)
.

= πτ 1 (x1)πτ 2 (x2) = e−
V (x1)
τ1 e−

V (x2)
τ2

/
Z (τ 1)Z (τ 2) .

Use the first marginal of the empirical measure.
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Parallel tempering analysis

In practice, much more temperatures (30− 50) are used.

Bring
in higher temperatures

1 Higher temperature simulations correspond to higher
volatility.

2 High-energy barriers are more easily crossed for
simulations carried out in higher temperatures.

3 Swapping enables information flow from high temperatures
to low temperatures.
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Donsker-Varadhan rate of decay

How does convergence depend on swap rate a?
Donsker-Varadhan theory for empirical measure. Let I denote
the large deviations rate function.
Let S denote the state space, for any µ ∈ P (S), if Nδ (µ) is a
δ-neighborhood of µ under weak topology

P (µT ∈ Nδ (µ)) ≈ e−T (I (µ)+ε(δ))

To achieve maximum rate of convergence, we choose a such
that I a is the largest possible.
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Large deviation rate function

Under mild conditions on V , one can calculate I explicitly
(Donser-Varadhan).

Suppose ν ∈ P (S) is given by

θ(x1, x2) =
dν
dπ

(x1, x2).

Then we have monotonic form

I a(ν) = J0(ν) + aJ1(ν)

where J0 is the rate for “no swap”dynamics; J1 is nonnegative
and

J1(ν) = 0 iff θ(x2, x1) = θ(x1, x2) ν-a.s.
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Limit of rate function

Thus for I a(ν) ↑ ∞ as a ↑ ∞ (ν is very unlikely) unless

θ(x2, x1) = θ(x1, x2) ν-a.s.

If we call measures that place precisely same relative weight on
permutations (x1, x2) and (x2, x1) as π symmetrized measures,
then
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Limit of rate function (cont’d)

By contraction principle, for probability measure γ

I a1 (γ) = inf {I a(ν) : first marginal of ν is γ} .

I a1 (γ) ↑ as a ↑ .

This suggests one consider the infinite swapping limit a ↑ ∞.
Unfortunately, limit process is not well defined (no tightness).
An alternative perspective: rather than swap particles, swap
temperatures, and use “weighted”empirical measure.
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Limit of rate function (cont’d)

By contraction principle, for probability measure γ

I a1 (γ) = inf {I a(ν) : first marginal of ν is γ} .

I a1 (γ) ↑ as a ↑ .

This suggests one consider the infinite swapping limit a ↑ ∞.
Unfortunately, limit process is not well defined (no tightness).
An alternative perspective: rather than swap particles, swap
temperatures, and use “weighted”empirical measure.
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Limit of rate function (cont’d)

By contraction principle, for probability measure γ

I a1 (γ) = inf {I a(ν) : first marginal of ν is γ} .

I a1 (γ) ↑ as a ↑ .

This suggests one consider the infinite swapping limit a ↑ ∞.
Unfortunately, limit process is not well defined (no tightness).
An alternative perspective: rather than swap particles, swap
temperatures, and use “weighted”empirical measure.
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"Temperature swapping "process

Temperature swapping process:

dY a1 = −∇V (Y a1 )dt +
√
2τ 11 (Z a = 1) + 2τ 21 (Z a = 2)dW1

dY a2 = −∇V (Y a2 )dt +
√
2τ 21 (Z a = 1) + 2τ 11 (Z a = 2)dW2,

where Z a(t) jumps from 1→ 2 with intensity ag(Y a1 (t),Y a2 (t))
and from 2→ 1 with intensity ag(Y a2 (t),Y a1 (t)).



Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

"Temperature swapping "process

Temperature swapping process:

dY a1 = −∇V (Y a1 )dt +
√
2τ 11 (Z a = 1) + 2τ 21 (Z a = 2)dW1

dY a2 = −∇V (Y a2 )dt +
√
2τ 21 (Z a = 1) + 2τ 11 (Z a = 2)dW2,

where Z a(t) jumps from 1→ 2 with intensity ag(Y a1 (t),Y a2 (t))
and from 2→ 1 with intensity ag(Y a2 (t),Y a1 (t)).



Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

"Temperature swapping "process

Temperature swapping process:

dY a1 = −∇V (Y a1 )dt +
√
2τ 11 (Z a = 1) + 2τ 21 (Z a = 2)dW1

dY a2 = −∇V (Y a2 )dt +
√
2τ 21 (Z a = 1) + 2τ 11 (Z a = 2)dW2,

where Z a(t) jumps from 1→ 2 with intensity ag(Y a1 (t),Y a2 (t))
and from 2→ 1 with intensity ag(Y a2 (t),Y a1 (t)).



Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

Infinite swapping limit

Instead of using ordinary empirical measure

µaT (·) =
1
T

∫ T

0
δ(X a1 ,X a2 )(·)dt,

use weighted empirical measure ηaT :

1
T

∫ T

0

[
1 (Z a = 1) δ(Y a1 ,Y a2 )(·) + 1 (Z a = 2) δ(Y a2 ,Y a1 )(·)

]
dt.

Ergodic theory ηaT → π . (Y a1 ,Y
a
2 , η

a
T ) admits a well defined

weak limit a→∞. Define state dependent weight

ρ1(x1, x2)
.

=
πτ 1 (x1)πτ 2 (x2)

πτ 1 (x1)πτ 2 (x2) + πτ 1 (x2)πτ 2 (x1)
,

ρ2(x1, x2)
.

=
πτ 1 (x2)πτ 2 (x1)

πτ 1 (x1)πτ 2 (x2) + πτ 1 (x1)πτ 2 (x2)
.
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Infinite swapping limit (cont’d)

The triple has following weak limit

dY1 = −∇V (Y1)dt +
√
2τ 1ρ1(Y1,Y2) + 2τ 2ρ2(Y1,Y2)dW1

dY2 = −∇V (Y2)dt +
√
2τ 2ρ1(Y1,Y2) + 2τ 1ρ2(Y1,Y2)dW2,

ηT (dx) =
1
T

∫ T

0

[
ρ1(Y1,Y2)δ(Y1,Y2) + ρ2(Y1,Y2)δ(Y2,Y1)

]
dt,

Theorem: for any sequence aT ↑ ∞,
{
ηaTT
}
satisfies the

uniform large deviations principle (in T ) with rate I∞

lim
a→∞

I a (ν) = I∞ (ν)
.

=

{
J0(ν) if θ (x1, x2) = θ (x2, x1)
∞ otherwise
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Infinite swapping limit (cont’d)

The triple has following weak limit
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Infinite swapping limit (cont’d)

The triple has following weak limit
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Implementation issues

• Applications of parallel tempering use many temperatures
(e.g., K = 30 to 50) when V is complicated to overcome
barriers of all different heights.

• Straightforward extension of infinite swapping to K
temperatures τ 1 < τ 2 < · · · < τK . Benefits of
symmetrization even greater.

• But, coeffi cients become complex, e.g., K ! weights, and
each involves many calculations.

• Need for computational feasibility leads to partial infinite
swapping.



Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

Implementation issues

• Applications of parallel tempering use many temperatures
(e.g., K = 30 to 50) when V is complicated to overcome
barriers of all different heights.

• Straightforward extension of infinite swapping to K
temperatures τ 1 < τ 2 < · · · < τK . Benefits of
symmetrization even greater.

• But, coeffi cients become complex, e.g., K ! weights, and
each involves many calculations.

• Need for computational feasibility leads to partial infinite
swapping.



Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

Implementation issues

• Applications of parallel tempering use many temperatures
(e.g., K = 30 to 50) when V is complicated to overcome
barriers of all different heights.

• Straightforward extension of infinite swapping to K
temperatures τ 1 < τ 2 < · · · < τK . Benefits of
symmetrization even greater.

• But, coeffi cients become complex, e.g., K ! weights, and
each involves many calculations.

• Need for computational feasibility leads to partial infinite
swapping.



Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

Implementation issues

• Applications of parallel tempering use many temperatures
(e.g., K = 30 to 50) when V is complicated to overcome
barriers of all different heights.

• Straightforward extension of infinite swapping to K
temperatures τ 1 < τ 2 < · · · < τK . Benefits of
symmetrization even greater.

• But, coeffi cients become complex, e.g., K ! weights, and
each involves many calculations.

• Need for computational feasibility leads to partial infinite
swapping.



Yufei Liu

Introduction

Outline

Standard
measures of
performance
and their
shortcomings

An accelerated
algorithm:
parallel
tempering

Large
deviation
properties and
the infinite
swapping limit

Implementation
issues and
partial infinite
swapping

Concluding
remarks

Partial infinite swapping

Partial infinite swapping. Instead of instantly symmetrizing
all permutations, pick subgroups of the set of permutations
(that can generate the whole permutation set) and construct
corresponding partial infinite swapping dynamics within each
group. Then alternate among each dynamics (need certain
handoff rule, use proper weight).
Examples are Dynamics A and B in figure:
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Comparison of PINS and PT
Relaxation study of convergence to equilibrium for LJ-38:
parallel tempering versus partial infinite swapping, only lowest
temperature illustrated.
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Concluding remarks
References:

• Mathematical paper: “On the infinite swapping limit for
parallel tempering”, Dupuis, Liu, Plattner and Doll, to be
appeared in SIAM J. on MMS

• Applications paper (lots of numerical data): “An infinite
swapping approach to the rare-event sampling problem”,
Plattner, Doll, Dupuis, Wang, Liu and Gubernatis, J. of
Chem. Phy. 135, 134111 (2011)

Many open questions.

• Selection of set of temperatures.
• Selection of “best” subgroups for partial infinite swapping
approximations.

• Better quantitative understanding of rate of marginals
such as I∞1 (γ)

• Application to other problems such as function
minimization.
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